Effectiveness of Ant Baits and Their Relationship with the Species of Ants Attracted


  • Sarah Browning Texas A&M University
  • Cora Pauline Garcia
  • Molly Anthony
  • Nicholas Champagne-Aves
  • Emmanuel Gbolabo
  • Christopher Polo
  • Andrew Tran


ants, macronutrient, bait, attractant


Insect infestations caused by a single species require control techniques that take advantage of the target’s natural instincts and passively lure them out of hiding. Bait traps commonly mimic the odor of food with chemical substitutes that trick an insect’s senses to passively guide it to the trap.  The purpose of this experiment was to test Texas ant species preferences for a carbohydrate or protein food source. Furthermore, comparisons were made of the data collected from different environments to test for preference differences between isolated populations of the same species. Data collection required three sticky traps; an unchanged control lacking a source of bait, and two others containing either a carbohydrate or protein-rich food source. Placing the traps in varying habitats allowed the testing for an environmental influence on a particular species’ food preference. The results suggest that, among the ant species collected, a majority prefer a carbohydrate food source. While the numbers favor carbohydrates, the specimen collected from the protein and control traps demonstrates an ability to utilize multiple food sources to attract a species and that food attractants improve the success of trapping. This experiment supports the benefit of bait trapping with carbohydrate attractant in ant pest management plans, but also shows that a combination of protein and carbohydrate attractant serves best.


Allen, R. C., S. Demarais, and S. R. Lutz. 1994. Red imported fire ant impact on wildlife: an overview. J. Science. 46:54-56.

Arrese, E. L., and J. L. Soulages. 2010. Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol. 55: 207—225.

Bradberry, S. M., S. A. Cage, A. T. Proudfoot, and J. A. Vale. 2005. Poisoning due to pyrethroids. Toxicol Rev. 24:93-106.

Cook, S.C., M. D. Eubanks, R. E. Gold, and S. T. Behmer. 2010. Colony-level macronutrient regulation in ants: mechanisms, hoarding and associated costs. Anim. Behav. 79: 429-437.

Cook, S.C., M. D. Eubanks, R. E. Gold, and S. T. Behmer. 2011. Seasonality directs contrasting food collection behavior and nutrient regulation strategies in ants. PLoS ONE. 6: e25407.

Dussutour, A. and S. J. Simpson. 2012. Ant workers die young and colonies collapse when fed high-protein diet. Proc. Biol. Sci. 279: 2402-2408.

Fields, H. C., W.E. Evans, R. Hartley, L. Hansen, and J. Klotz. 2007. A survey of structural ant pests in the southwestern U.S.A. Sociobio. 49:151-164.

Hackett, A. M., B. Guénard, E. K. Youngsteadt, and R. R. Dunn. 2014. Fine-scale heterogeneity across Manhattan's urban habitat mosaic is associated with variation in ant composition and richness. Insect Conserv. Diver. 8: 216-228.

Hahn, D., and D. Wheeler. 2002. Seasonal foraging activity and bait preferences of ants on Barro Colorado island, Panama. Biotropica. 34: 348-356.

Holway, D.A., L. Lach, A.V. Suarez, N.D. Tsutsui, and T.J. Case. 2002. The ecological cases and consequences of ant invasions. Annu. Rev. Ecol. Evol. Syst. 33:185-232.

Hill J.G., K.S. Summerville, and R. L. Brown. 2008. Habitat associations of ant species (Hymenoptera: Formicidae) in a heterogeneous Mississippi landscape. J. Environ. Ento. 37:453-463.

Kaakeh, W., and J. D. Dutcher. 1992. Foraging preference of red imported fire ants (Hymenoptera: Formicidae) among three species of summer cover crops and their extracts. J. Econ. Entomol. 85: 389—394.

Kemp, S. F., R. D. Deshazo, J. E. Moffitt, D. F. Williams, and W. A. Buhner. 2000. Expanding habitat of the imported fire ant: A public health concern. J. Allerg. Clin. Immunol. 105: 683—691.

Lach, L., T. Volp, and S. Wilder. 2019. Previous diet affects the amount but not the type of bait consumed by an invasive ant. Pest Mgmt. Science. 75: 2627—2633.

MacLean, H. J., C. A. Penick., R. R. Dunn, and S. E. Diamond. 2017. Experimental winter warming modifies thermal performance and primes acorn ants for warm weather. J. Insect Physiol. 100: 77—81.

McGlynn, T.P. 1999. The worldwide transfer of ants: geographical distribution and ecological invasions. J. Biogeogr. 26: 536-550.

Stablein, J. J., and R. F. Lockey. 1987. Adverse reactions to ant stings. Clin. Rev. Allerg. 5: 161-175.

Touchard, A., S. R. Aili, E. G. Fox, P. Escoubas, J. Orivel, G. M. Nicholson, and A. Dejean. 2016. The biochemical toxin arsenal from ant venoms. Toxins. 8:1-30.

Williams, D.F., and P. M. Whelan. 1992. Bait attraction of the introduced pest ant, Wasmannia auropunctata (Hymenoptera: Formicidae) in the Galapagos islands. J. Entomol. Sci. 27: 29-34.